Problem 1-1

The shaft is supported by a smooth thrust bearing at B and a journal bearing at C. Determine the resultant internal loadings acting on the cross section at E.

Prob. 1-1

Solution

According to Table 1-1 on page 5, the journal bearing at C prevents motion in the vertical direction, and the thrust bearing at B prevents motion in the horizontal and vertical directions. As a result, there are three unknown forces in the free-body diagram of the shaft shown below.

Use Newton's second law to obtain two equations involving the unknown forces.

$$
\sum \mathbf{F}=m \mathbf{a} \Rightarrow\left\{\begin{array} { l }
{ \sum F _ { x } = m a _ { x } } \\
{ \sum F _ { y } = m a _ { y } }
\end{array} \rightarrow \left\{\begin{array}{r}
B_{x}=0 \\
-400+B_{y}+C_{y}-800=0
\end{array}\right.\right.
$$

Take the sum of the moments about point C to get a third equation involving only B_{y}.

$$
\sigma^{+} \sum \mathbf{M}_{C}=\mathbf{0} \Rightarrow(400 \mathrm{lb})(12 \mathrm{ft})-B_{y}(8 \mathrm{ft})-(800 \mathrm{lb})(4 \mathrm{ft})=0
$$

Solving these three equations gives

$$
\begin{aligned}
B_{x} & =0 \\
B_{y} & =200 \mathrm{lb} \\
C_{y} & =1000 \mathrm{lb} .
\end{aligned}
$$

Now that the reactions at B and C are known, the internal loadings at E can be determined using the method of sections.

Find them with the equations of equilibrium.

$$
\begin{aligned}
\sum F_{x} & =B_{x}+N_{E}=0 \\
\sum F_{y} & =-400+B_{y}-V_{E}=0 \\
\sigma^{+} \sum(\text { Moments about } E) & =M_{E}-B_{y}(4 \mathrm{ft})+(400 \mathrm{lb})(8 \mathrm{ft})=0
\end{aligned}
$$

Plug in the reactions

$$
\begin{aligned}
N_{E} & =0 \\
-400+200-V_{E} & =0 \\
M_{E}-(200 \mathrm{lb})(4 \mathrm{ft})+(400 \mathrm{lb})(8 \mathrm{ft}) & =0
\end{aligned}
$$

and solve the system of equations for N_{E}, V_{E}, and M_{E}.

$$
\begin{aligned}
N_{E} & =0 \\
V_{E} & =-200 \mathrm{lb} \\
M_{E} & =-2400 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned}
$$

